Downloads

药剂学的多维突破:跨学科融合下的创新与转化. (2025). 环球生命科学研究, 2(1), 6-14. https://doi.org/10.62836/

药剂学的多维突破:跨学科融合下的创新与转化

王露1▲,张赵阳1,陈华黎2

1. 重庆理工大学药学与生物工程学院,重庆

2. 重庆医科大学药学院,重庆

摘要:药剂学正经历从“经验驱动”向“数据驱动”的范式转变,这一转变源于跨学科融合,其核心逻辑是追求药物递送精准化、治疗方案个性化及研发流程高效化。在技术创新方面,计算药剂学通过多尺度建模与数据算法构建全链条研发体系;分子药剂学借助无定形分散体、金属络合物、共晶体系等策略实现药物结构与功能的精准调控;纳米递送系统历经三代迭代,从被动靶向到主动精准递送,在临床转化中展现出显著价值。教育领域也应相应革新,通过重构培养目标、重组课程内容、创新实践模式,培养跨学科复合型人才。通过技术创新、教育革新与临床转化的深度耦合,推动药剂学在跨学科融合中实现高质量发展,为精准医疗和个性化医疗奠定基础。

药剂学 跨学科融合 技术创新(计算药剂学、分子药剂学、纳米递送系统) 教育革新 范式转变

参考文献

[1] Sancho J. M., Fernández-Alvarez R., Gual-Capllonch F., et al. R-COMP versus R-CHOP as first-line therapy for diffuse large B-cell lymphoma in patients ≥60 years: results of a randomized phase 2 study from the Spanish GELTAMO group[J]. Cancer Med, 2021, 10(4): 1314-1326.
[2] Rigacci L., Annibali O., Kovalchuk S., et al. Nonpegylated liposomal doxorubicin combination regimen (R-COMP) for the treatment of lymphoma patients with advanced age or cardiac comorbidity[J], Hematol Oncol, 38 (4) (2020) 478-486.
[3] Wang W, Ye Z Y, Gao H L, et al. Computational pharmaceutics- A new paradigm of drug delivery[J]. J Control Release, 2021, 338: 119-136.
[4] Shaik A. N., Khan A. A. Physiologically based pharmacokinetic (PBPK) modeling and simulation in drug discovery and development[J]. ADMET & DMPK, 2019, 7(1): 1-3.
[5] Kaur P., Jiang X. J., Duan J., et al. Applications of in Vitro- in Vivo correlations in generic drug development: Case studies[J]. AAPS J, 2015, 17(4): 1035-1039.
[6] 欧阳德方,计算药剂学——制药4.0中的人工智能和建模[M].北京:化学工业出版社, 2024-09.
[7] Ji Y. H., Hao D. L., Luebbert C., et al. Insights into influence mechanism of polymeric excipients on dissolution of drug formulations: A molecular interaction - based theoretical model analysis and prediction[J]. AIChE Journal, 2021, 67(11): e17372.
[8] Guerra W, Azevedo E d A, Monteiro A R d S, et al. Synthesis, characterization, and antibacterial activity of three palladium(II) complexes of tetracyclines[J]. J Inorg Biochem, 2005, 99(12): 2348-2354.
[9] El-Megharbel, S. M., Qahl, S. H., Alaryani, F. S., Hamza, R. Z. Synthesis, spectroscopic studies for five new Mg (II), Fe (III), Cu (II), Zn (II) and Se (IV) ceftriaxone antibiotic drug complexes and their possible hepatoprotective and antioxidant capacities. Antibiotics, 2022, 11, 547.
[10] Ouyang J, Liu L, Li Y, et al. Cocrystals of carbamazepine: Structure, mechanical properties, fluorescence properties, solubility and dissolution rate[J]. Particuology, 2023, 77: 1-15.
[11] Patil B., Surana S., Shirkhedkar A. Co-crystallization in antiepileptic drugs: A path toward better therapeutic outcomes[J]. Cureus, 2025, 17(4): e82230.
[12] Deng M., Rao J. D., Guo R, et al. Size-adjustable nano- drug delivery systems for enhanced tumor retention and penetration[J]. Pharmaceut Fronts, 2021, 3: e98-e112.
[13] Prajapati A., Rangra S., Patil R., et al. Receptor-targeted nanomedicine for cancer therapy[J]. Receptors, 2024, 3: 323- 361.
[14] Hu C., Cun X., Ruan S., et al. Enzyme-triggered size shrink and laser enhanced NO release nanoparticles for deep tumor penetration and combination therapy[J]. Biomaterials, 2018, 168: 64-75.
[15] Wang D. D., Chen W. L., Li H., et al. Folate-receptor mediated pH/reduction-responsive biomimetic nanoparticles for dually activated multi-stage anticancer drug delivery[J]. Int J Pharm, 2020, 585: 119456.
[16] Tripathi D., Pandey P., Sharma S., et al.Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity[J]. Biolmpacts, 2025, 15: 30573.
[17] Da Silva J., Bienassis C., Schmitt P., et al. Radiotherapy-activated NBTXR3 nanoparticles promote ferroptosis through induction of lysosomal membrane permeabilization[J]. J Exp Clin Cancer Res, 2024, 43(1): 11.
[18] Rastinehad A.R., Anastos, H., Wajswol, E., et al. Gold nanoshell- localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 2019, 116, 18590-18596.