Downloads

一种实用航班座控自适应随机逼近算法. (2025). 环球科学与工程, 2(5), 21-32. https://doi.org/10.62836/gse.v2i5.547

一种实用航班座控自适应随机逼近算法

吴国华

中国国际航空股份有限公司规划发展部,北京

摘要:针对无需模型预测和优化等先验知识的航空公司收益管理,本文提出了一种实用航班调舱的自适应随机逼近算法,该方法采用航班子舱的旅客出行人数来迭代更新近期航班舱位的保护水平,消除市场扰动影响,用随机逼近理论来证明迭代更新舱位保护水平的自适应逼近算法的收敛性。用模拟仿真方法进行算法对比验证,该方法不需要太多先验知识,算法迭代简单和实用,实时性强,并把该算法应用到航空公司北京-成都的航班调舱上,表明该算法有效性,可以更好匹配市场,满足旅客需求,提高航空公司的收益。

航空公司收益管理 舱位嵌套保护水平 座位控制 自适应辨识算法 随机逼近 全局渐进收敛性

参考文献

[1] Barnhart C, Belobaba PP, Odoni AR. Applications of operations research in the air transport industry[J]. Transportation Science, 2003, 37: 368-391.
[2] McGill JI and van Ryzin GJ. Revenue management: Research overviews and prospects[J]. Transportation Science, 1999, 33: 233 - 256.
[3] Littlewood K. Forecasting and Control of Passenger Bookings, In: 12thAGIFORS Annual Symposium Proceedings[C], Nathanya(Israel), 1972, 95 - 117.
[4] Belobaba PP. Application of a probabilistic decision model to airline seat inventory control[J]. Operations Research, 1989, 37: 183-197.
[5] Curry RE. Optimal airline seat allocation with fare classes nested by origin and destinations[J]. Transportation Science, 1990, 24: 193-204.
[6] Brumelle SL, McGill JI, Ouin TH, et al. Allocation of airline seats between stochastically dependent demands[J]. Transp. Sci., 1990, 24:183-192.
[7] Wollmer RD. An airline seat management model for a single leg route when lower fare classes book first[J]. Operations Research, 1992, 40: 26 - 37.
[8] Belobaba PP. Optimal vs. Heuristic Methods for Nested Seat Allocation, In: Proceedings of the AGIFORS Reservations and Yield Management Study Group[C], Brussels, 1992.
[9] Belobaba PP, Weatherford LR. Comparing decision rules that incorporate customer diversion in perishable asset revenue management situations[J]. Decision Sciences, 1996, 27:343 - 363.
[10] Robbins H, Monro S. A stochastic approximation method[J]. Arm. Math. Statist, 1951, 22: 400-407.
[11] Kiefer J, Wolfowitz J. Stochastic estimation of the maximum of a regression function[J]. Ann. Math. Statist, 1952, 23:462 - 466.
[12] Chen HF, Zhu YM. Stochastic Approximation. Shanghai: Shanghai Scientific & Technical Publishers[B], 1996, 22 [陈瀚馥,朱允民.随机逼近.上海:上海科学技术出版社,1996,22].
[13] Lai TL. Stochastic approximation[J]. Ann. Statist, 2003, 31:391-406.
[14] Van Ryzin G, McGill J. Revenue Management Without Forecasting or Optimization: An Adaptive Algorithm for Determining Airline Seat Protection Levels[J]. Management Science, 2000, 46: 760-775.
[15] Brumelle SL, McGill JI. Airline seat allocation with multiple nested fare classes[J]. Oper. Res, 1993, 41: 127-137.
[16] Kunnuinkal S, Topaloglu H. Using stochastic approximation algorithms to compute optimal basestock levels in inventory control problems[J]. Oper. Res., 2008, 56: 646-664.
[17] Guo L. Time-Varying Stochastic Systems: Stability and Adaptive Theory[B]. 2nd ed. Beijing: Science Press, 2022. 118 [郭雷.时变随机系统:稳定性与自适应理论.第二版.北京:科学出版社,2022. 118].
[18] Zhang LT, Guo L. Adaptive identification with guaranteed performance under saturated-observation and nonpersistent excitation[J]. 2022, ArXiv:2207.02422.
[19] Wang F, Zhang LT, Guo L. Applications of nonlinear recursive identification theory in sentencing data analyses[J]. Sci Sin Inform, 2022, 52:1837-1852 [王芳,张蓝天,郭雷.非线性递推辨识理论在量刑数据分析中的应用.中国科学:信息科学,2022, 52:1837-1852].
[20] Sinha NK, Griscik MP. A stichastic approximation method[J]. IEEE Transactions on System, Man and Cybernetics, 1971, 1: 338-344.