Downloads

铁锰锌负载生物炭材料对镉砷复合污染土壤的修复效果研究. (2025). 环球科学与工程, 2(4), 1-12. https://doi.org/10.62836/gse.v2i4.442

铁锰锌负载生物炭材料对镉砷复合污染土壤的修复效果研究

解晓露1,2,李伟平1,2,刘桂建2,3

1. 安徽国祯环境修复股份有限公司,安徽合肥

2. 合肥市土壤及地下水修复工程技术研究中心,安徽合肥

3. 中国科学技术大学地球和空间科学学院,安徽合肥

为解决环境中Cd、As复合污染问题,运用二次共沉淀法制备出铁锰锌负载生物炭复合材料 FMZB(Fe:Mn:Zn=3:1:1),通过吸附实验对比复合材料FMZB和BC对Cd、As的吸附动力学和热力学特征、分析环境因素pH和共存离子对FMZB吸附Cd、As的影响。同时开展淹水环境下的土培实验,研究材料(FMZB)对复合污染土壤中有效态Cd、As的降低率。结果表明,FMZB和BC对Cd、As两种重金属均具有一定的吸附能力,材料对重金属的吸附动力学和等温吸附实验均可用动力学方程和热力学方程较好的拟合,FMZB对Cd、As的最大吸附容量为21.72 mg·g-1、35.16 mg·g-1,分别为BC的1.46倍和6.23倍;两种材料对Cd和As的吸附过程可能包括离子交换、络合和沉淀。随着溶液pH的增加,FMZB对 Cd的吸附先增加后趋于稳定,对As的吸附量略有降低;溶液中的硫酸根和氯离子对材料吸附Cd、As无显著影响,磷酸根和碳酸根可使Cd的吸附量分别增加89.78%~94.85%、41.59%~91.64%,而As的吸附量分别降低39.32%~59.55%、51.30%~69.86%;土培实验结果表明:FMZB材料可同时降低土壤中的有效态Cd、As含量,随着培养时间的延长,土壤中有效态Cd的降低率先增加后降低,21d时最大(31.21%~40.29%);有效砷含量变化相反,21d时最小(3.52%~8.95%);培养60d后,有效态Cd含量降低率为20.59%~23.06%,有效态As含量降低率为4.5%~10.58%,Cd由碳酸盐结合态转向残渣态,As由特异性结合态转向无定型水合氧化物态。

铁锰锌 生物炭 重金属修复 镉砷复合污染

参考文献

[1] 李杰, 赵转军, 马翔邦, 等. 优化水铁矿-腐殖酸复合材料对镉、铅污染土壤的稳定化[J].环境化学, 2022, 41(8): 2693-2702.
[2] Wang MY, Li MY, Ning H, et al. Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice[J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127373
[3] Zhou S, Du Y, Feng Y, et al. Stabilization of arsenic and antimony Co-contaminated soil with an iron- based stabilizer: Assessment of strength, leaching and hydraulic properties and immobilization mechanisms[J]. Chemosphere, 2022, 301: 134644.
[4] Wang L, Li Z T, Wang Y, et al. Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects[J]. Science of the Total Environment, 2021, 750: 141672.
[5] Shan DN, Shi Y, Zhou B, et al. Simultaneous and continuous stabilization of As and Cd in contaminated soil by a half wrapping-structured amendment[J]. Journal of Environmental Chemical Engineering, 2021, 9(4).
[6] Arancibia-Miranda N, Manquian-Cerda K, Pizarro C, et al. Mechanistic insights into simultaneous removal of copper, cadmium and arsenic from water by iron oxide functionalized magnetic imogolite nanocomposites[J]. Journal of Hazardous Materials, 2020, 398: 122940.
[7] Mu TT, Wu T, Z Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373-381.
[8] Tang XJ, Shen HR, Chen M, et al. Achieving the safe use of Cd- and As-contaminated agricultural land with an Fe-based biochar: A field study [J]. Science of the Total Environment, 2020, 706: 135898.
[9] 陈晨, 李方敏, 杨利, 等. 不同类型生物炭对稻田镉污染修复的机制与应用[J]. 环境化学, 2022, 41(12): 4165-4179.
[10] Jiang XY, Ouyang ZZ, Zhang Z F, et al.Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 64-72.
[11] 柯国洲, 彭书平, 徐涛, 等. 土壤重金属镉修复技术研究进展[J]. 广州化工, 2017, 45(14): 28-31.
[12] Zhang W, Tan X, Gu Y, et al. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment[J]. Chemosphere, 2020, 250: 126268.
[13] Irshad MK, Noman A, Alhaithloul H A S, et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil[J]. Science of the Total Environment, 2020, 717: 137086.
[14] Zhou QW, Liao BH, Lin LN, et al. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites[J]. Science of the Total Environment, 2018, 615: 115-122.
[15] Lin LN, Qiu WW, Wang D, et al. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism[J]. Ecotoxicology and Environmental Safety, 2017, 144: 514-521.
[16] Lin LN, Gao M, Qiu WW, et al. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments[J]. Environmental Pollution, 2017, 231: 479-486.
[17] 陈幸玲. 铁锰氧化物生物炭吸附、钝化镉砷研究[D].广州:广东工业大学, 2022.
[18] Wu K, Wang M, Li AZ, et al. The enhanced As(III) removal by Fe-Mn-Cu ternary oxide via synergistic oxidation: Performances and mechanisms[J]. Chemical Engineering Journal, 2021, 406.
[19] Zhang GG, Liu XW, Gao ML, et al. Effect of Fe- Mn-Ce modified biochar composite on microbial diversity and properties of arsenic-contaminated paddy soils[J]. Chemosphere, 2020, 250: 126249.
[20] Liu XW, Gao ML, Qiu WW. Fe–Mn–Ce oxide-modified biochar composites as efficient adsorbents for removing As(III) from water: adsorption performance and mechanisms[J]. Research Article. 2019: https://doi.org/10.1007/s11356-019-04914-8
[21] Lin LN, Qiu WW, Wang D, et al. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism[J], Ecotoxicology, 2017, 144: 514-521.
[22] Lin L, Li Z, Liu, X, et al. Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil[J]. Environmental Pollution, 2019, 244: 600-607.
[23] Yang T, Xu Y, Huang Q, et al. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(II) in water [J]. Bioresource Technology, 2021, 333: 125078.
[24] Lin L, Song Z, Huang Y, et al. Removal and oxidation of arsenic from aqueous solution by biochar impregnated with Fe-Mn oxides[J]. Water Air and Soil Pollution, 2019, 230(5): 105.
[25] Tang XJ, Shen HR, Chen M, et al. Achieving the safe use of Cd and As-contaminated agricultural land with an Fe-based biochar: A field study[J]. Science of the Total Environment, 2020, 706: 13589.
[26] Sun C, Chen T, Huang Q, et al. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification [J]. Environmental Science and Pollution Research, 2019, 26(9): 8902-8913.
[27] Zhou Q, Liao B, Lin L, et al. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites [J]. Science of the Total Environment, 2018, 615: 115-122.
[28] 中华人民共和国农业部. 土壤pH的测定 NY/T 1377- 2007[S]. 北京:中国标准出版社,2007.
[29] 环境保护部. 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016[S]. 北京: 中国标准出版社, 2016.
[30] 中华人民共和国国家质量监督检疫总局, 中国国家标准化管理委员会. 土壤质量 有效态铅和镉的测定原子吸收法 GB/T 23739-2009[S]. 北京: 中国标准出版社, 2009.
[31] 福建省质量技术监督局. 酸性土壤中有效砷、有效汞的测定 原子荧光法 DB35/T 1459-2014[S]. 福建: 福建地方标准出版社, 2014.
[32] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry(Washington), 1979, 51(7): 844-851.
[33] Wenzel WW, Kirchbaumer N, Prohaska T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309–323.
[34] Yan XL, Shao JQ, Wen QQ, et al. Stabilization of soil arsenic by natural limonite after mechanical activation and the associated mechanisms[J]. Science of Total Environment, 2020, 708: 135118.
[35] 连斌, 吴骥子, 赵科理, 等. 铁锰氧化物-微生物负载生物质炭材料对镉和砷的吸附机制[J]. 环境科学, 2022, 43(3): 1584-1595.
[36] 宋乐, 韩占涛, 吕晓立, 等.利用改性生物质电厂灰钝化修复北方Cd污染土壤的试验研究[J]. 农业环境科学学报, 2018, 37(7):1484-1494.
[37] 宋小旺. 铁锰氧化物生物炭吸附/钝化镉研究[D]. 广州:广东工业大学, 广东, 2020.
[38] Liu L, Yue T, Liu R, et al. Efficient absorptive removal of Cd(Ⅱ) in aqueous solution by biochar derived from sewage sludge and calcium sulfate[J]. Bioresource Technology, 2021, 336: 125333.
[39] 陈幸玲. 铁锰氧化物生物炭吸附、钝化镉砷研究[D]. 广州:广东工业大学, 2022.
[40] 裴楠, 梁学峰, 秦旭, 等. 海泡石对镉污染稻田钝化修复效果的稳定性[J]. 农业环境科学学报, 2022, 41(2): 0277-0284.
[41] Lin CC, Lai YT. Adsorption and recovery of lead(Ⅱ) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads[J]. Journal of Hazardous Materials, 2006, 137(1): 99105.
[42] Reddy DHK,Lee SM.Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 45: 96-103.
[43] Zhang LF, Zhu TY, Liu X, et al. Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent[J]. Journal of Hazardous Materials, 2016, 308: 1-10.
[44] 周世明. 铁基纳米复合材料的制备及对砷吸附性能研究 [D]. 天津: 天津大学, 2016.
[45] Bandara T, Chathurika JBAJ, Franks A, et al. Interactive effects of biochar type and pH on the bioavailability of As and Cd and microbial activities in co-contaminated soils[J]. Environmental Technology & Innovation, 2021, 23: 101767.
[46] Li HY, Ye XX, Geng ZG, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. Journal of Hazardous Materials, 2016, 304: 40-48.
[47] Islam MS, Magid A, Chen Y, et al. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues[J]. Science of the Total Environment, 2021, 785: 147163.
[48] Tian X, Wang D, Chai G, et al. Does biochar inhibit the bioavailability and bioaccumulation of As and Cd in co-contaminated soils? A meta-analysis [J]. Science of the Total Environment, 2021, 762: 143117
[49] Tang XY, Zhu YG, Shan XQ, et al. The ageing effect on the bio-accessibility and fractionation of arsenic in soils from China[J]. Chemosphere, 2007, 66 (7): 1183e1190.
[50] Matsumoto S, Kasuga J, Makino T, et al. Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncdontaminated soil with relatively high levels of arsenic[J]. Environment and Experimental Botany, 2016, 125: 42e51.