Downloads
Download
天然产物对酒精性肝损伤的保护作用研究进展. (2025). 环球医学研究, 2(3), 9-20. https://doi.org/10.62836/medicine.v2i3.837
Copyright (c) 2025 崔新妍, 娄在祥, 段文杰, 段光志

This work is licensed under a Creative Commons Attribution 4.0 International License.
天然产物对酒精性肝损伤的保护作用研究进展
崔新妍1,娄在祥1*,段文杰2,段光志2
1. 江南大学食品学院,江苏无锡
2. 湖北仙之灵食品有限公司,湖北荆门
摘要:酒精性肝损伤是指由于长期或短期内大量饮酒引起的肝组织病变,逐渐会发展为脂肪肝、酒精性肝炎、纤维化、肝硬化和肝癌。近年来,天然产物因其靶点多、毒性低且副作用少的优点而受到越来越多的关注,一些天然产物及其活性成分被证明对酒精性肝损伤具有显著的保护作用。本文综述了酒精性肝损伤的主要发病机制,包括乙醇代谢、氧化应激、炎症反应、脂质代谢异常和肠道菌群失调等方面, 以及天然产物对酒精性肝损伤的防护作用和机制,以期为天然产物的进一步开发和利用提供参考。
参考文献
[1] 曲航, 高鑫, 伊娟娟, 等. 食源性天然产物对酒精性肝损伤的防护作用研究进展[J]. 食品科学, 2020, 41(17): 283-290.
[2] Singal A K, Bataller R, Ahn J, et al. ACG Clinical Guideline: Alcoholic Liver Disease[J]. The American Journal of Gastro-enterology, 2018, 113(2): 175-194.
[3] Sun Y, Dong Y, Cui X, et al. Effects of Marine Natural rod- ucts on Liver Diseases[J]. Marine Drugs, 2024, 22(7): 288.
[4] Yan J, Nie Y, Luo M, et al. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease?[J]. Frontiers in har-macology, 2021, 12: 694475.
[5] Gao B, Bataller R. Alcoholic Liver Disease: athogenesis and New Therapeutic Targets[J]. Gastroenterology, 2011, 141(5): 1572.
[6] Yip W W, Burt A D. Alcoholic liver disease[J]. Seminars in Diagnostic athology, 2006, 23(3): 149-160.
[7] Manthey J, Shield K D, Rylett M, et al. Global alcohol expo-sure between 1990 and 2017 and forecasts until 2030: a modelling study[J]. The Lancet, 2019, 393(10190): 2493-2502.
[8] Wang W J, Xiao P, Xu H Q, et al. Growing burden of alco- holic liver disease in China: A review[J]. World Journal of Gastroenterology, 2019, 25(12): 1445.
[9] Ding R B, Tian K, huang L L, et al. Herbal medicines for the prevention of alcoholic liver disease: A review[J]. Journal of Ethnopharmacology, 2012, 144(3): 457-465.
[10] He Z, Guo T, Cui Z, et al. New understanding of Angelica sinensis polysaccharide improving fatty liver: The dual inhibition of lipid syn-thesis and CD36-mediated lipid uptake and the regulation of alcohol metabolism[J]. International Journal of Biological Macromolecules, 2022, 207: 813-825.
[11] Li P, Chen Y, Ke X, et al. Baicalin ameliorates alcohol-induced he- patic steatosis by suppressing SREBP1c elicited PNPLA3 competi- tive binding to ATGL[J]. Archives of Biochemistry and Biophysics, 2022, 722: 109236.
[12] Cai Z, Song L, Qian B, et al. Understanding the effect of antho- cyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice[J]. Food Chemistry, 2018, 245: 463-470.
[13] Dogra A, Li F. Small-molecule chemical probes for the potential therapeutic targets in alcoholic liver diseases[J]. Liver Research, 2023, 7(3): 177-188.
[14] Kong L Z, Chandimali N, Han Y H, et al. athogenesis, Early Diag- nosis, and Therapeutic Management of Alcoholic Liver Disease[J]. International Journal of Molecular Sciences, 2019, 20(11): 2712.
[15] Dunn W, Shah V H. athogenesis of Alcoholic Liver Disease[J]. Clinics in Liver Disease, 2016, 20(3): 445-456.
[16] Jiang Y, Zhang T, Kusumanchi P, et al. Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome 450 2E1, Catalase, and Aldehyde Dehydrogenase in Alco-hol-Associated Liver Disease[J]. Biomedicines, 2020, 8(3): 50.
[17] Yang Y, Ji J, Di L, et al. Resource, chemical structure and activ-ity of natural polysaccharides against alcoholic liver damages[J]. Carbohydrate Polymers, 2020, 241: 116355.
[18] Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism[J]. World Journal of Gas-troenterology : WJG, 2014, 20(47): 17756.
[19] Lu Y, Cederbaum A I. CYP2E1 and oxidative liver injury by alco- hol[J]. Free Radical Biology and Medicine, 2008, 44(5): 723-738.
[20] Zhao L, Mehmood A, Yuan D, et al. rotective Mechanism of Edi- ble Food lants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds[J]. Nutrients, 2021, 13(5): 1612.
[21] Bardag-Gorce F, Li J, French B A, et al. The effect of etha- nol-induced CYP2E1 on proteasome activity: the role of 4-hy-droxynonenal[J]. Experimental and Molecular Pathology, 2005, 78(2): 109-115.
[22] Zhao N, Guo F F, Xie K Q, et al. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease[J]. Cellular and Molecular Life Sciences: CMLS, 2018, 75(17): 3143.
[23] Sun S, Zhang J, Li H, et al. Anti-inflammatory activity of the water extract of Chloranthus serratus roots in LPS-stimulated RAW264.7 cells mediated by the Nrf2/HO-1, MAPK and NF-κB signaling pathways[J]. Journal of Ethnopharmacology, 2021, 271: 113880.
[24] Luo C, Lin Q, Wen Y, et al. Protective effect of Acanthus ilici- folius extracts against acute alcoholic liver injury via suppressing TLR4/NF-κB signal pathway and modulating intestinal micro- biota in mice[J]. Natural Product Research, 0(0): 1-7.
[25] Bai Y, Liu F, Zheng L, et al. “Yajieshaba” prevents acute al-coholic liver injury and repairs the intestinal mucosal barrier[J]. Journal of Ethnopharmacology, 2024, 318: 116921.
[26] Mello T, Polvani S, Galli A. Peroxisome Proliferator-Activated Receptor and Retinoic X Receptor in Alcoholic Liver Disease[J]. PPAR Research, 2009, 2009: 748174.
[27] Wang F, Tipoe G L, Yang C, et al. Lycium barbarum Polysac-charide Supplementation Improves Alcoholic Liver Injury in Fe-male Mice by Inhibiting Stearoyl-CoA Desaturase 1[J]. Molecu-lar Nutrition & Food Research, 2018, 62(13): 1800144.
[28] Tang C C, Huang H P, Lee Y J, et al. Hepatoprotective effect of mulberry water extracts on ethanol-induced liver injury via anti-inflammation and inhibition of lipogenesis in C57BL/6J mice[J]. Food and Chemical Toxicology, 2013, 62: 786-796.
[29] Lu J, Zhang Y, Wang Y Z, et al. Caffeic acid dimethyl ether alle- viates alcohol-induced hepatic steatosis via microRNA-378b-me- diated CaMKK2-AMPK pathway[J]. Bioengineered, 2022, 13(4): 11123.
[30] You M, Matsumoto M, Pacold C M, et al. The role of AMP-ac- tivated protein kinase in the action of ethanol in the liver[J]. Gastroenterology, 2004, 127(6): 1798-1808.
[31] Madushani Herath K H I N, Cho J, Kim A, et al. Phenolic acid and flavonoid-rich fraction of Sasa quelpaertensis Nakai leaves prevent alcohol induced fatty liver through AMPK ac-tivation[J]. Journal of Ethnopharmacology, 2018, 224: 335-348.
[32] Zhao L, Wang S, Zhang N, et al. The Beneficial Effects of Natural Extracts and Bioactive Compounds on the Gut-Liv-er Axis: A romising Intervention for Alcoholic Liver Dis-ease[J]. Antioxidants, 2022, 11(6): 1211.
[33] 邓小燕, 钟凌云, 朱卫丰, 等. 葛根炮制的历史沿革及其现代炮制机制研究进展[J]. 中华中医药杂志, 2020, 35(7): 3524-3526.
[34] 曾文燊, 黄达荣, 谢斯威, 等. 葛根异黄酮组成、结构及功效机制研究进展[J]. 食品科学, 2023, 44(1): 353-361.
[35] Wu Q, Li P, Li X, et al. Pueraria Extract Ameliorates Alco- holic Liver Disease via the Liver–Gut–Brain Axis: Focus on Restoring the Intestinal Barrier and Inhibiting Alcohol Metab-olism[J]. Journal of Agricultural and Food Chemistry, 2024, 72(44): 24449-24462.
[36] 姚媛, 盖永强, 陈铁军, 等. 野生葛根与栽培葛根对慢性酒精中毒小鼠的护肝作用比较[J]. 食品科学, 2022, 43(23): 174-179.
[37] Xie C, Yan S, Zhang Z, et al. Mapping the metabolic sig-natures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted me-tabolomics[J]. LWT, 2020, 129: 109494.
[38] Guo W L, Cao Y J, You S Z, et al. Ganoderic acids-rich ethanol extract from Ganoderma lucidum protects against alcoholic liver injury and modulates intestinal microbiota in mice with excessive alcohol intake[J]. Current Research in Food Science, 2022, 5: 515-530.
[39] Chung D J, Yang M Y, Li Y R, et al. Ganoderma lucidum repress injury of ethanol-induced steatohepatitis via anti-inflammation, anti-oxidation and reducing hepatic lipid in C57BL/6J mice[J]. Journal of Functional Foods, 2017, 33: 314-322.
[40] Zhang J, Cui X, Luo W, et al. The qualitative and quantitative analysis of Ganoderma lucidum spore powder chemical compounds as p38 MAPK inhibitors by the generation and verification of pharmacophore modelling[J]. LWT, 2024, 194: 115817.
[41] Leng Y, Wang F, Chen C, et al. Protective Effect of Ganoderma lucidum Spore Powder on Acute Liver Injury in Mice and its Regulation of Gut Microbiota[J]. Frontiers in Bioscience-Landmark, 2023, 28(2): 23.
[42] Yu J, Yan Y, Zhang L, et al. A comprehensive review of goji berry processing and utilization[J]. Food Science & Nutrition, 2023, 11(12): 7445-7457.
[43] Guo L, Guan Q, Duan W, et al. Dietary Goji Shapes the Gut Microbiota to Prevent the Liver Injury Induced by Acute Alcohol Intake[J]. Frontiers in Nutrition, 2022, 9: 929776.
[44] Duan W, Zhou L, Ren Y, et al. Lactic acid fermentation of goji berries (Lycium barbarum) prevents acute alcohol liver injury and modulates gut microbiota and metabolites in mice[J]. Food & Function, 2024, 15(3): 1612-1626.
[45] eng H, Deng Z, Chen X, et al. Major chemical constituents and antioxidant activities of different extracts from the peduncles of Hovenia acerba Lindl[J]. International Journal of Food Properties, 2018, 21(1): 2135-2155.
[46] Meng X, Tang G Y, Zhao C N, et al. Hepatoprotective effects of Hovenia dulcis seeds against alcoholic liver injury and related mechanisms investigated via network pharmacology[J]. World Journal of Gastroenterology, 2020, 26(24): 3432-3446.
[47]Lan H, Bai Z, Luo D, et al. rotective mechanisms of Hovenia dulcis Thunb extracts on acute alcoholism and liver injury[J]. Food Bioscience, 2024, 62: 105264.
[48] Cheng R fei, Sun M ke, Hu Q rui, et al. Hovenia acerba Lindl. peduncles and seeds extracts ameliorate alcoholic liver injury by activating the Nrf2/HO-1 signalling pathway in LO2 cells and mice[J]. Food Bioscience, 2023, 51: 102224.
[49] Cao W, Wu J, Zhao X, et al. Structural elucidation of an active polysaccharide from Radix Puerariae lobatae and its protection against acute alcoholic liver disease[J]. Carbohydrate Polymers, 2024, 325: 121565.
[50] Zhou X, Wang J, Zhou S. Poria cocos polysaccharides improve alcoholic liver disease by interfering with ferroptosis through NRF2 regulation[J]. Aging (Albany NY), 2024, 16(7): 6147-6162.
[51] Yuan R, Tao X, Liang S, et al. Protective effect of acidic polysaccharide from Schisandra chinensis on acute ethanol- induced liver injury through reducing CYP2E1-dependent oxidative stress[J]. Biomedicine & Pharmacotherapy, 2018, 99: 537-542.
[52] Wang H, Yan J, Wang K, et al. The gut-liver axis perspective: Exploring the protective potential of polysaccharides from Cistanche deserticola against alcoholic liver disease[J]. International Journal of Biological Macromolecules, 2024, 256: 128394.
[53] Nie G, Zhang Y, Zhou Z, et al. Dynamic evaluation of the protective effect of Dendrobium officinale polysaccharide on acute alcoholic liver injury mice in vitro and in vivo by NIR fluorescence imaging[J]. Analytical and Bioanalytical Chemistry, 2021, 413(23): 5715-5724.
[54] Yan Y, Wu W, Lu L, et al. Study on the synergistic protective effect of Lycium barbarum L. polysaccharides and zinc sulfate on chronic alcoholic liver injury in rats[J]. Food Science & Nutrition, 2019, 7(11): 3435.
[55] Wang H, Li Y, Liu J, et al. Hepatoprotective effect of crude polysaccharide isolated from Lycium barbarum L. against alcohol-induced oxidative damage involves Nrf2 signaling[J]. Food Science & Nutrition, 2020, 8(12): 6528-6538.
[56] Li D, Sun L, Yang Y, et al. reventive and therapeutic effects of pigment and polysaccharides in Lycium barbarum on alcohol-induced fatty liver disease in mice[J]. CyTA - Journal of Food, 2018, 16(1): 938-949.
[57] Dhiman A, Nanda A, Ahmad S. A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments[J]. Arabian Journal of Chemistry, 2016, 9: S1813-S1823.
[58] Liu Y S, Yuan M H, Zhang C Y, et al. Puerariae Lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism[J]. Biomedicine & Pharmacotherapy, 2021, 134: 111121.
[59] Chen X, Li R, Liang T, et al. Puerarin improves metabolic function leading to hepatoprotective effects in chronic alcohol-induced liver injury in rats[J]. Phytomedicine, 2013, 20(10): 849-852.
[60] Hu Y, Wang S, Wu L, et al. uerarin inhibits inflammation and lipid accumulation in alcoholic liver disease through regulating MMP8[J]. Chinese Journal of Natural Medicines, 2023, 21(9): 670-681.
[61] Li X, Liu L, Wan M X, et al. Active Components of Pueraria lobata through the MAPK/ERK Signaling Pathway Alleviate Iron Overload in Alcoholic Liver Disease[J]. Chemistry & Biodiversity, 2024, 21(5): e202400005.
[62] Batiha G E S, Beshbishy A M, Ikram M, et al. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin[J]. Foods, 2020, 9(3): 374.
[63] Liu S, Tian L, Chai G, et al. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLR 3 inflammasome activation[J]. Food & Function, 2018, 9(8): 4184-4193.
[64] Chen H, Liu J, Peng S, et al. Autophagy and exosomes coordinately mediate quercetin’s protective effects on alcoholic liver disease[J]. The Journal of Nutritional Biochemistry, 2023, 116: 109332.
[65] Yao Y, Yuan H, Chen C, et al. Study of the Antioxidant Capacity and Oxidation Products of Resveratrol in Soybean Oil[J]. Foods, 2024, 13(1): 29.
[66] Zhang B, Zhang Y, Liu X, et al. Distinctive anti- inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice[J]. Food Chemistry, 2023, 400: 133904.
[67] Chu S H, Yang D, Wang Y ping, et al. Effect of resveratrol on the repair of kidney and brain injuries and its regulation on klotho gene in d-galactose-induced aging mice[J]. Bioorganic & Medicinal Chemistry Letters, 2021, 40: 127913.
[68] Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases[J]. Frontiers in Pharmacology, 2022, 13.
[69] McGill M R, Du K, Weemhoff J L, et al. Critical review of resveratrol in xenobiotic-induced hepatotoxicity[J]. Food and Chemical Toxicology, 2015, 86: 309-318.
[70] Peiyuan H, Zhiping H, Chengjun S, et al. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017(1): 4287890.
[71] Ma Z, Zhang Y, Li Q, et al. Resveratrol improves alcoholic fatty liver disease by downregulating HIF-1α expression and mitochondrial ROS production[J]. PLOS ONE, 2017, 12(8): e0183426.
[72] Kim H, Pan J H, Kim S H, et al. Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species[J]. Biochimie, 2018, 150: 131-138.
[73] Zhu H, Jiang W, Liu C, et al. Ameliorative effects of chlorogenic acid on alcoholic liver injury in mice via gut microbiota informatics[J]. European Journal of Pharmacology, 2022, 928: 175096.
[74] Barrett A H, Farhadi N F, Smith T J. Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins— A review of efficacy and mechanisms[J]. LWT, 2018, 87: 394-399.
[75] Zhou Y, Jin H, Wu Y, et al. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism[J]. Toxicology in Vitro, 2019, 57: 226-232.
[76] Kartkaya K, Oğlakçı A, Şentürk H, et al. Investigation of the possible protective role of gallic acid on paraoxanase and arylesterase activities in livers of rats with acute alcohol intoxication[J]. Cell Biochemistry and Function, 2013, 31(3): 208-213.
[77] Jahangeer M, Fatima R, Ashiq M, et al. Therapeutic and Biomedical Potentialities of Terpenoids–A Review[J]. Journal of Pure and Applied Microbiology, 2021, 15(2): 471-483.
[78] Yao P, Liu Y. Terpenoids: Natural Compounds for Non- Alcoholic Fatty Liver Disease (NAFLD) Therapy[J]. Molecules, 2023, 28(1): 272.
[79] 丁雯昕, 杜柏霖, 李娇, 等. 五环三萜类天然产物研究进展[J]. 药学学报, 2024, 59(5): 1163-1175.
[80] He Y, Wang Y, Yang K, et al. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases[J]. Molecules, 2022, 27(24): 8732.
[81] Cheng Y, Xia Q, Lu Z, et al. Maslinic acid attenuates UVB- induced oxidative damage in HFF-1 cells[J]. Journal of Cosmetic Dermatology, 2023, 22(8): 2352-2360.
[82] Lin X, Ozbey U, Sabitaliyevich U Y, et al. Maslinic acid as an effective anticancer agent[J]. CELLULAR AND MOLECULAR BIOLOGY, 2018, 64(10): 87-91.
[83] Huang L, Guan T, Qian Y, et al. Anti-inflammatory effects of maslinic acid, a natural triterpene, in cultured cortical astrocytes via suppression of nuclear factor-kappa B[J]. European Journal of Pharmacology, 2011, 672(1): 169-174.
[84] Gao H, Wu H. Maslinic acid activates renal AMPK/SIRT1 signaling pathway and protects against diabetic nephropathy in mice[J]. BMC Endocrine Disorders, 2022, 22(1): 25.
[85] Yan S lei, Yang H ting, Lee H lin, et al. Protective effects of maslinic acid against alcohol-induced acute liver injury in mice[J]. Food and Chemical Toxicology, 2014, 74: 149-155.
[86] Su J, Dai Y, Wu X, et al. Maslinic acid alleviates alcoholic liver injury in mice and regulates intestinal microbiota via the gut–liver axis[J]. Journal of the Science of Food and Agriculture, 2024, 104(13): 7928- 7938.
[87] 李铭莹, 林霖, 王岩, 等. 人参皂苷抗肿瘤机制及其纳米药物递送系统的研究进展[J]. 中草药, 2024, 55(2): 688-696.
[88] Dana SMM A, Meghdadi M, Kakhki S K, et al. Anti-leukemia effects of ginsenoside monomer: A narrative review of pharmacodynamics study[J]. Current Therapeutic Research, 2024, 100: 100739.
[89] Yang C, He X, Zhao J, et al. Hepatoprotection by Ginsenoside Rg1 in alcoholic liver disease[J]. International Immunopharmacology, 2021, 92: 107327.
[90] Lai Y, Tan Q, Xv S, et al. Ginsenoside Rb1 Alleviates Alcohol- Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation[J]. FRONTIERS IN HARMACOLOGY, 2021, 12: 616409.
[91] Pan Z, Guo J, Tang K, et al. Ginsenoside Rc Modulates SIRT6-NRF2 Interaction to Alleviate Alcoholic Liver Disease[J]. Journal of Agricultural and Food Chemistry, 2022, 70(44): 14220-14234.
[92] Zou J, Yang R, Feng R, et al. Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLR 3 and NLR 6 inflammasome signaling pathways in mice[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 999-1012.
[93] Qu L, Zhu Y, Liu Y, et al. Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis[J]. Food and Chemical Toxicology, 2019, 126: 277-284.
[94] Kim M H, Kim H H, Jeong J M, et al. Ginsenoside F2 attenuates chronic-binge ethanol-induced liver injury by increasing regulatory T cells and decreasing Th17 cells[J]. Journal of Ginseng Research, 2020, 44(6): 815-822.
[95] Debnath B, Singh W S, Das M, et al. Role of plant alkaloids on human health: A review of biological activities[J]. Materials Today Chemistry, 2018, 9: 56-72.
[96] Zhu L, Xu J J, Li H D, et al. Berberine Ameliorates Abnormal Lipid Metabolism via the Adenosine Monophosphate–Activated Protein Kinase/Sirtuin 1 athway in Alcohol-Related Liver Disease[J]. Laboratory Investigation, 2023, 103(4): 100041.
[97] Li S, Wang N, Tan H Y, et al. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease[J]. Clinical and Translational Medicine, 2020, 10(4): e112.
[98] Zhang F, Zhang J, Li Y. Corn oligopeptides protect against early alcoholic liver injury in rats[J]. Food and Chemical Toxicology, 2012, 50(6): 2149-2154.
[99] Tao Z, Zhang L, Wu T, et al. Echinacoside ameliorates alcohol- induced oxidative stress and hepatic steatosis by affecting SREBP1c/FASN pathway via PPARα[J]. Food and Chemical Toxicology, 2021, 148: 111956.
[100] Li B, Li D, Wang Y, et al. Schisantherin A alleviated alcohol-induced liver injury by the regulation of alcohol metabolism and NF-kB pathway[J]. Experimental Animals, 2018, 67(4): 451-461.
[101] Chen L Y, Chen Q, Cheng Y F, et al. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis[J]. Biomedicine & Pharmacotherapy, 2016, 79: 35-43.
[102] Zheng J, Tian X, Zhang W, et al. Protective Effects of Fucoxanthin against Alcoholic Liver Injury by Activation of Nrf2-Mediated Antioxidant Defense and Inhibition of TLR4- Mediated Inflammation[J]. Marine Drugs, 2019, 17(10): 552.
[103] Sun F, Xie M L, Zhu L J, et al. Inhibitory effect of osthole on alcohol-induced fatty liver in mice[J]. Digestive and Liver Disease, 2009, 41(2): 127-133.
[104] 江新辉, 江敏, 江铭福, 等. 牡蛎肽对酒精性肝损伤与体力疲劳的影响[J]. 中国食品学报, 2024, 24(7): 201-207.
[105] Wang X, Yu H, Xing R, et al. Hepatoprotective Effect of Oyster eptide on Alcohol-Induced Liver Disease in Mice[J]. International Journal of Molecular Sciences, 2022, 23(15): 8081.
[106] 郭元亨, 曹丽丽, 赵兵, 等. 荒漠肉苁蓉苯乙醇苷对酒精诱导的慢性肝损伤的修复作用(英文)[J]. 食品科学, 2018, 39(13): 176-183.
[107] Qi Z, Liu J, Xu Y, et al. Protective effects of phenylethanol glycosides from Cistanche tubulosa against ALD through modulating gut microbiota homeostasis[J]. Journal of Ethnopharmacology, 2025, 337: 118925.
[108] 亓照耀, 许源慧, 刘金存, 等. 肉苁蓉苯乙醇苷对ALD小鼠肠道黏膜屏障和肠道菌群的影响[J]. 中国实验方剂学杂志, 2024, 30(9): 65-73.
[2] Singal A K, Bataller R, Ahn J, et al. ACG Clinical Guideline: Alcoholic Liver Disease[J]. The American Journal of Gastro-enterology, 2018, 113(2): 175-194.
[3] Sun Y, Dong Y, Cui X, et al. Effects of Marine Natural rod- ucts on Liver Diseases[J]. Marine Drugs, 2024, 22(7): 288.
[4] Yan J, Nie Y, Luo M, et al. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease?[J]. Frontiers in har-macology, 2021, 12: 694475.
[5] Gao B, Bataller R. Alcoholic Liver Disease: athogenesis and New Therapeutic Targets[J]. Gastroenterology, 2011, 141(5): 1572.
[6] Yip W W, Burt A D. Alcoholic liver disease[J]. Seminars in Diagnostic athology, 2006, 23(3): 149-160.
[7] Manthey J, Shield K D, Rylett M, et al. Global alcohol expo-sure between 1990 and 2017 and forecasts until 2030: a modelling study[J]. The Lancet, 2019, 393(10190): 2493-2502.
[8] Wang W J, Xiao P, Xu H Q, et al. Growing burden of alco- holic liver disease in China: A review[J]. World Journal of Gastroenterology, 2019, 25(12): 1445.
[9] Ding R B, Tian K, huang L L, et al. Herbal medicines for the prevention of alcoholic liver disease: A review[J]. Journal of Ethnopharmacology, 2012, 144(3): 457-465.
[10] He Z, Guo T, Cui Z, et al. New understanding of Angelica sinensis polysaccharide improving fatty liver: The dual inhibition of lipid syn-thesis and CD36-mediated lipid uptake and the regulation of alcohol metabolism[J]. International Journal of Biological Macromolecules, 2022, 207: 813-825.
[11] Li P, Chen Y, Ke X, et al. Baicalin ameliorates alcohol-induced he- patic steatosis by suppressing SREBP1c elicited PNPLA3 competi- tive binding to ATGL[J]. Archives of Biochemistry and Biophysics, 2022, 722: 109236.
[12] Cai Z, Song L, Qian B, et al. Understanding the effect of antho- cyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice[J]. Food Chemistry, 2018, 245: 463-470.
[13] Dogra A, Li F. Small-molecule chemical probes for the potential therapeutic targets in alcoholic liver diseases[J]. Liver Research, 2023, 7(3): 177-188.
[14] Kong L Z, Chandimali N, Han Y H, et al. athogenesis, Early Diag- nosis, and Therapeutic Management of Alcoholic Liver Disease[J]. International Journal of Molecular Sciences, 2019, 20(11): 2712.
[15] Dunn W, Shah V H. athogenesis of Alcoholic Liver Disease[J]. Clinics in Liver Disease, 2016, 20(3): 445-456.
[16] Jiang Y, Zhang T, Kusumanchi P, et al. Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome 450 2E1, Catalase, and Aldehyde Dehydrogenase in Alco-hol-Associated Liver Disease[J]. Biomedicines, 2020, 8(3): 50.
[17] Yang Y, Ji J, Di L, et al. Resource, chemical structure and activ-ity of natural polysaccharides against alcoholic liver damages[J]. Carbohydrate Polymers, 2020, 241: 116355.
[18] Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism[J]. World Journal of Gas-troenterology : WJG, 2014, 20(47): 17756.
[19] Lu Y, Cederbaum A I. CYP2E1 and oxidative liver injury by alco- hol[J]. Free Radical Biology and Medicine, 2008, 44(5): 723-738.
[20] Zhao L, Mehmood A, Yuan D, et al. rotective Mechanism of Edi- ble Food lants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds[J]. Nutrients, 2021, 13(5): 1612.
[21] Bardag-Gorce F, Li J, French B A, et al. The effect of etha- nol-induced CYP2E1 on proteasome activity: the role of 4-hy-droxynonenal[J]. Experimental and Molecular Pathology, 2005, 78(2): 109-115.
[22] Zhao N, Guo F F, Xie K Q, et al. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease[J]. Cellular and Molecular Life Sciences: CMLS, 2018, 75(17): 3143.
[23] Sun S, Zhang J, Li H, et al. Anti-inflammatory activity of the water extract of Chloranthus serratus roots in LPS-stimulated RAW264.7 cells mediated by the Nrf2/HO-1, MAPK and NF-κB signaling pathways[J]. Journal of Ethnopharmacology, 2021, 271: 113880.
[24] Luo C, Lin Q, Wen Y, et al. Protective effect of Acanthus ilici- folius extracts against acute alcoholic liver injury via suppressing TLR4/NF-κB signal pathway and modulating intestinal micro- biota in mice[J]. Natural Product Research, 0(0): 1-7.
[25] Bai Y, Liu F, Zheng L, et al. “Yajieshaba” prevents acute al-coholic liver injury and repairs the intestinal mucosal barrier[J]. Journal of Ethnopharmacology, 2024, 318: 116921.
[26] Mello T, Polvani S, Galli A. Peroxisome Proliferator-Activated Receptor and Retinoic X Receptor in Alcoholic Liver Disease[J]. PPAR Research, 2009, 2009: 748174.
[27] Wang F, Tipoe G L, Yang C, et al. Lycium barbarum Polysac-charide Supplementation Improves Alcoholic Liver Injury in Fe-male Mice by Inhibiting Stearoyl-CoA Desaturase 1[J]. Molecu-lar Nutrition & Food Research, 2018, 62(13): 1800144.
[28] Tang C C, Huang H P, Lee Y J, et al. Hepatoprotective effect of mulberry water extracts on ethanol-induced liver injury via anti-inflammation and inhibition of lipogenesis in C57BL/6J mice[J]. Food and Chemical Toxicology, 2013, 62: 786-796.
[29] Lu J, Zhang Y, Wang Y Z, et al. Caffeic acid dimethyl ether alle- viates alcohol-induced hepatic steatosis via microRNA-378b-me- diated CaMKK2-AMPK pathway[J]. Bioengineered, 2022, 13(4): 11123.
[30] You M, Matsumoto M, Pacold C M, et al. The role of AMP-ac- tivated protein kinase in the action of ethanol in the liver[J]. Gastroenterology, 2004, 127(6): 1798-1808.
[31] Madushani Herath K H I N, Cho J, Kim A, et al. Phenolic acid and flavonoid-rich fraction of Sasa quelpaertensis Nakai leaves prevent alcohol induced fatty liver through AMPK ac-tivation[J]. Journal of Ethnopharmacology, 2018, 224: 335-348.
[32] Zhao L, Wang S, Zhang N, et al. The Beneficial Effects of Natural Extracts and Bioactive Compounds on the Gut-Liv-er Axis: A romising Intervention for Alcoholic Liver Dis-ease[J]. Antioxidants, 2022, 11(6): 1211.
[33] 邓小燕, 钟凌云, 朱卫丰, 等. 葛根炮制的历史沿革及其现代炮制机制研究进展[J]. 中华中医药杂志, 2020, 35(7): 3524-3526.
[34] 曾文燊, 黄达荣, 谢斯威, 等. 葛根异黄酮组成、结构及功效机制研究进展[J]. 食品科学, 2023, 44(1): 353-361.
[35] Wu Q, Li P, Li X, et al. Pueraria Extract Ameliorates Alco- holic Liver Disease via the Liver–Gut–Brain Axis: Focus on Restoring the Intestinal Barrier and Inhibiting Alcohol Metab-olism[J]. Journal of Agricultural and Food Chemistry, 2024, 72(44): 24449-24462.
[36] 姚媛, 盖永强, 陈铁军, 等. 野生葛根与栽培葛根对慢性酒精中毒小鼠的护肝作用比较[J]. 食品科学, 2022, 43(23): 174-179.
[37] Xie C, Yan S, Zhang Z, et al. Mapping the metabolic sig-natures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted me-tabolomics[J]. LWT, 2020, 129: 109494.
[38] Guo W L, Cao Y J, You S Z, et al. Ganoderic acids-rich ethanol extract from Ganoderma lucidum protects against alcoholic liver injury and modulates intestinal microbiota in mice with excessive alcohol intake[J]. Current Research in Food Science, 2022, 5: 515-530.
[39] Chung D J, Yang M Y, Li Y R, et al. Ganoderma lucidum repress injury of ethanol-induced steatohepatitis via anti-inflammation, anti-oxidation and reducing hepatic lipid in C57BL/6J mice[J]. Journal of Functional Foods, 2017, 33: 314-322.
[40] Zhang J, Cui X, Luo W, et al. The qualitative and quantitative analysis of Ganoderma lucidum spore powder chemical compounds as p38 MAPK inhibitors by the generation and verification of pharmacophore modelling[J]. LWT, 2024, 194: 115817.
[41] Leng Y, Wang F, Chen C, et al. Protective Effect of Ganoderma lucidum Spore Powder on Acute Liver Injury in Mice and its Regulation of Gut Microbiota[J]. Frontiers in Bioscience-Landmark, 2023, 28(2): 23.
[42] Yu J, Yan Y, Zhang L, et al. A comprehensive review of goji berry processing and utilization[J]. Food Science & Nutrition, 2023, 11(12): 7445-7457.
[43] Guo L, Guan Q, Duan W, et al. Dietary Goji Shapes the Gut Microbiota to Prevent the Liver Injury Induced by Acute Alcohol Intake[J]. Frontiers in Nutrition, 2022, 9: 929776.
[44] Duan W, Zhou L, Ren Y, et al. Lactic acid fermentation of goji berries (Lycium barbarum) prevents acute alcohol liver injury and modulates gut microbiota and metabolites in mice[J]. Food & Function, 2024, 15(3): 1612-1626.
[45] eng H, Deng Z, Chen X, et al. Major chemical constituents and antioxidant activities of different extracts from the peduncles of Hovenia acerba Lindl[J]. International Journal of Food Properties, 2018, 21(1): 2135-2155.
[46] Meng X, Tang G Y, Zhao C N, et al. Hepatoprotective effects of Hovenia dulcis seeds against alcoholic liver injury and related mechanisms investigated via network pharmacology[J]. World Journal of Gastroenterology, 2020, 26(24): 3432-3446.
[47]Lan H, Bai Z, Luo D, et al. rotective mechanisms of Hovenia dulcis Thunb extracts on acute alcoholism and liver injury[J]. Food Bioscience, 2024, 62: 105264.
[48] Cheng R fei, Sun M ke, Hu Q rui, et al. Hovenia acerba Lindl. peduncles and seeds extracts ameliorate alcoholic liver injury by activating the Nrf2/HO-1 signalling pathway in LO2 cells and mice[J]. Food Bioscience, 2023, 51: 102224.
[49] Cao W, Wu J, Zhao X, et al. Structural elucidation of an active polysaccharide from Radix Puerariae lobatae and its protection against acute alcoholic liver disease[J]. Carbohydrate Polymers, 2024, 325: 121565.
[50] Zhou X, Wang J, Zhou S. Poria cocos polysaccharides improve alcoholic liver disease by interfering with ferroptosis through NRF2 regulation[J]. Aging (Albany NY), 2024, 16(7): 6147-6162.
[51] Yuan R, Tao X, Liang S, et al. Protective effect of acidic polysaccharide from Schisandra chinensis on acute ethanol- induced liver injury through reducing CYP2E1-dependent oxidative stress[J]. Biomedicine & Pharmacotherapy, 2018, 99: 537-542.
[52] Wang H, Yan J, Wang K, et al. The gut-liver axis perspective: Exploring the protective potential of polysaccharides from Cistanche deserticola against alcoholic liver disease[J]. International Journal of Biological Macromolecules, 2024, 256: 128394.
[53] Nie G, Zhang Y, Zhou Z, et al. Dynamic evaluation of the protective effect of Dendrobium officinale polysaccharide on acute alcoholic liver injury mice in vitro and in vivo by NIR fluorescence imaging[J]. Analytical and Bioanalytical Chemistry, 2021, 413(23): 5715-5724.
[54] Yan Y, Wu W, Lu L, et al. Study on the synergistic protective effect of Lycium barbarum L. polysaccharides and zinc sulfate on chronic alcoholic liver injury in rats[J]. Food Science & Nutrition, 2019, 7(11): 3435.
[55] Wang H, Li Y, Liu J, et al. Hepatoprotective effect of crude polysaccharide isolated from Lycium barbarum L. against alcohol-induced oxidative damage involves Nrf2 signaling[J]. Food Science & Nutrition, 2020, 8(12): 6528-6538.
[56] Li D, Sun L, Yang Y, et al. reventive and therapeutic effects of pigment and polysaccharides in Lycium barbarum on alcohol-induced fatty liver disease in mice[J]. CyTA - Journal of Food, 2018, 16(1): 938-949.
[57] Dhiman A, Nanda A, Ahmad S. A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments[J]. Arabian Journal of Chemistry, 2016, 9: S1813-S1823.
[58] Liu Y S, Yuan M H, Zhang C Y, et al. Puerariae Lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism[J]. Biomedicine & Pharmacotherapy, 2021, 134: 111121.
[59] Chen X, Li R, Liang T, et al. Puerarin improves metabolic function leading to hepatoprotective effects in chronic alcohol-induced liver injury in rats[J]. Phytomedicine, 2013, 20(10): 849-852.
[60] Hu Y, Wang S, Wu L, et al. uerarin inhibits inflammation and lipid accumulation in alcoholic liver disease through regulating MMP8[J]. Chinese Journal of Natural Medicines, 2023, 21(9): 670-681.
[61] Li X, Liu L, Wan M X, et al. Active Components of Pueraria lobata through the MAPK/ERK Signaling Pathway Alleviate Iron Overload in Alcoholic Liver Disease[J]. Chemistry & Biodiversity, 2024, 21(5): e202400005.
[62] Batiha G E S, Beshbishy A M, Ikram M, et al. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin[J]. Foods, 2020, 9(3): 374.
[63] Liu S, Tian L, Chai G, et al. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLR 3 inflammasome activation[J]. Food & Function, 2018, 9(8): 4184-4193.
[64] Chen H, Liu J, Peng S, et al. Autophagy and exosomes coordinately mediate quercetin’s protective effects on alcoholic liver disease[J]. The Journal of Nutritional Biochemistry, 2023, 116: 109332.
[65] Yao Y, Yuan H, Chen C, et al. Study of the Antioxidant Capacity and Oxidation Products of Resveratrol in Soybean Oil[J]. Foods, 2024, 13(1): 29.
[66] Zhang B, Zhang Y, Liu X, et al. Distinctive anti- inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice[J]. Food Chemistry, 2023, 400: 133904.
[67] Chu S H, Yang D, Wang Y ping, et al. Effect of resveratrol on the repair of kidney and brain injuries and its regulation on klotho gene in d-galactose-induced aging mice[J]. Bioorganic & Medicinal Chemistry Letters, 2021, 40: 127913.
[68] Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases[J]. Frontiers in Pharmacology, 2022, 13.
[69] McGill M R, Du K, Weemhoff J L, et al. Critical review of resveratrol in xenobiotic-induced hepatotoxicity[J]. Food and Chemical Toxicology, 2015, 86: 309-318.
[70] Peiyuan H, Zhiping H, Chengjun S, et al. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017(1): 4287890.
[71] Ma Z, Zhang Y, Li Q, et al. Resveratrol improves alcoholic fatty liver disease by downregulating HIF-1α expression and mitochondrial ROS production[J]. PLOS ONE, 2017, 12(8): e0183426.
[72] Kim H, Pan J H, Kim S H, et al. Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species[J]. Biochimie, 2018, 150: 131-138.
[73] Zhu H, Jiang W, Liu C, et al. Ameliorative effects of chlorogenic acid on alcoholic liver injury in mice via gut microbiota informatics[J]. European Journal of Pharmacology, 2022, 928: 175096.
[74] Barrett A H, Farhadi N F, Smith T J. Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins— A review of efficacy and mechanisms[J]. LWT, 2018, 87: 394-399.
[75] Zhou Y, Jin H, Wu Y, et al. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism[J]. Toxicology in Vitro, 2019, 57: 226-232.
[76] Kartkaya K, Oğlakçı A, Şentürk H, et al. Investigation of the possible protective role of gallic acid on paraoxanase and arylesterase activities in livers of rats with acute alcohol intoxication[J]. Cell Biochemistry and Function, 2013, 31(3): 208-213.
[77] Jahangeer M, Fatima R, Ashiq M, et al. Therapeutic and Biomedical Potentialities of Terpenoids–A Review[J]. Journal of Pure and Applied Microbiology, 2021, 15(2): 471-483.
[78] Yao P, Liu Y. Terpenoids: Natural Compounds for Non- Alcoholic Fatty Liver Disease (NAFLD) Therapy[J]. Molecules, 2023, 28(1): 272.
[79] 丁雯昕, 杜柏霖, 李娇, 等. 五环三萜类天然产物研究进展[J]. 药学学报, 2024, 59(5): 1163-1175.
[80] He Y, Wang Y, Yang K, et al. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases[J]. Molecules, 2022, 27(24): 8732.
[81] Cheng Y, Xia Q, Lu Z, et al. Maslinic acid attenuates UVB- induced oxidative damage in HFF-1 cells[J]. Journal of Cosmetic Dermatology, 2023, 22(8): 2352-2360.
[82] Lin X, Ozbey U, Sabitaliyevich U Y, et al. Maslinic acid as an effective anticancer agent[J]. CELLULAR AND MOLECULAR BIOLOGY, 2018, 64(10): 87-91.
[83] Huang L, Guan T, Qian Y, et al. Anti-inflammatory effects of maslinic acid, a natural triterpene, in cultured cortical astrocytes via suppression of nuclear factor-kappa B[J]. European Journal of Pharmacology, 2011, 672(1): 169-174.
[84] Gao H, Wu H. Maslinic acid activates renal AMPK/SIRT1 signaling pathway and protects against diabetic nephropathy in mice[J]. BMC Endocrine Disorders, 2022, 22(1): 25.
[85] Yan S lei, Yang H ting, Lee H lin, et al. Protective effects of maslinic acid against alcohol-induced acute liver injury in mice[J]. Food and Chemical Toxicology, 2014, 74: 149-155.
[86] Su J, Dai Y, Wu X, et al. Maslinic acid alleviates alcoholic liver injury in mice and regulates intestinal microbiota via the gut–liver axis[J]. Journal of the Science of Food and Agriculture, 2024, 104(13): 7928- 7938.
[87] 李铭莹, 林霖, 王岩, 等. 人参皂苷抗肿瘤机制及其纳米药物递送系统的研究进展[J]. 中草药, 2024, 55(2): 688-696.
[88] Dana SMM A, Meghdadi M, Kakhki S K, et al. Anti-leukemia effects of ginsenoside monomer: A narrative review of pharmacodynamics study[J]. Current Therapeutic Research, 2024, 100: 100739.
[89] Yang C, He X, Zhao J, et al. Hepatoprotection by Ginsenoside Rg1 in alcoholic liver disease[J]. International Immunopharmacology, 2021, 92: 107327.
[90] Lai Y, Tan Q, Xv S, et al. Ginsenoside Rb1 Alleviates Alcohol- Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation[J]. FRONTIERS IN HARMACOLOGY, 2021, 12: 616409.
[91] Pan Z, Guo J, Tang K, et al. Ginsenoside Rc Modulates SIRT6-NRF2 Interaction to Alleviate Alcoholic Liver Disease[J]. Journal of Agricultural and Food Chemistry, 2022, 70(44): 14220-14234.
[92] Zou J, Yang R, Feng R, et al. Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLR 3 and NLR 6 inflammasome signaling pathways in mice[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 999-1012.
[93] Qu L, Zhu Y, Liu Y, et al. Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis[J]. Food and Chemical Toxicology, 2019, 126: 277-284.
[94] Kim M H, Kim H H, Jeong J M, et al. Ginsenoside F2 attenuates chronic-binge ethanol-induced liver injury by increasing regulatory T cells and decreasing Th17 cells[J]. Journal of Ginseng Research, 2020, 44(6): 815-822.
[95] Debnath B, Singh W S, Das M, et al. Role of plant alkaloids on human health: A review of biological activities[J]. Materials Today Chemistry, 2018, 9: 56-72.
[96] Zhu L, Xu J J, Li H D, et al. Berberine Ameliorates Abnormal Lipid Metabolism via the Adenosine Monophosphate–Activated Protein Kinase/Sirtuin 1 athway in Alcohol-Related Liver Disease[J]. Laboratory Investigation, 2023, 103(4): 100041.
[97] Li S, Wang N, Tan H Y, et al. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease[J]. Clinical and Translational Medicine, 2020, 10(4): e112.
[98] Zhang F, Zhang J, Li Y. Corn oligopeptides protect against early alcoholic liver injury in rats[J]. Food and Chemical Toxicology, 2012, 50(6): 2149-2154.
[99] Tao Z, Zhang L, Wu T, et al. Echinacoside ameliorates alcohol- induced oxidative stress and hepatic steatosis by affecting SREBP1c/FASN pathway via PPARα[J]. Food and Chemical Toxicology, 2021, 148: 111956.
[100] Li B, Li D, Wang Y, et al. Schisantherin A alleviated alcohol-induced liver injury by the regulation of alcohol metabolism and NF-kB pathway[J]. Experimental Animals, 2018, 67(4): 451-461.
[101] Chen L Y, Chen Q, Cheng Y F, et al. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis[J]. Biomedicine & Pharmacotherapy, 2016, 79: 35-43.
[102] Zheng J, Tian X, Zhang W, et al. Protective Effects of Fucoxanthin against Alcoholic Liver Injury by Activation of Nrf2-Mediated Antioxidant Defense and Inhibition of TLR4- Mediated Inflammation[J]. Marine Drugs, 2019, 17(10): 552.
[103] Sun F, Xie M L, Zhu L J, et al. Inhibitory effect of osthole on alcohol-induced fatty liver in mice[J]. Digestive and Liver Disease, 2009, 41(2): 127-133.
[104] 江新辉, 江敏, 江铭福, 等. 牡蛎肽对酒精性肝损伤与体力疲劳的影响[J]. 中国食品学报, 2024, 24(7): 201-207.
[105] Wang X, Yu H, Xing R, et al. Hepatoprotective Effect of Oyster eptide on Alcohol-Induced Liver Disease in Mice[J]. International Journal of Molecular Sciences, 2022, 23(15): 8081.
[106] 郭元亨, 曹丽丽, 赵兵, 等. 荒漠肉苁蓉苯乙醇苷对酒精诱导的慢性肝损伤的修复作用(英文)[J]. 食品科学, 2018, 39(13): 176-183.
[107] Qi Z, Liu J, Xu Y, et al. Protective effects of phenylethanol glycosides from Cistanche tubulosa against ALD through modulating gut microbiota homeostasis[J]. Journal of Ethnopharmacology, 2025, 337: 118925.
[108] 亓照耀, 许源慧, 刘金存, 等. 肉苁蓉苯乙醇苷对ALD小鼠肠道黏膜屏障和肠道菌群的影响[J]. 中国实验方剂学杂志, 2024, 30(9): 65-73.