Downloads

基于人工智能的失智症家庭照护者情绪监测和干预应用的范围综述. (2025). 环球医学研究, 2(3), 1-8. https://doi.org/10.62836/medicine.v2i3.836

基于人工智能的失智症家庭照护者情绪监测和干预应用的范围综述

徐嘉悦,缪新子,李梦琪,彭秋蓉,施涵,赵瑞祺,曹世华*

杭州师范大学,浙江杭州

摘要:目的:对人工智能(AI)情绪监测技术在失智症家庭照护者心理干预与支持中的应用进行范围审查,总结其监测方式、干预内容、结局指标及效果,为提升家庭照护者的心理健康与生活质量提供参考。方法:系统检索PubMed、Web of Science、Health & Medical Complete(ProQuest)、Scopus、Cochrane Library、Springer Link及IEEE Xplore数据库中自建库至2025年9月11日的相关文献,对符合标准的文献进行分析与归纳。结果:共纳入6篇文献。AI情绪监测技术主要包括智能聊天机器人、可穿戴生理监测设备和多模态情感计算系统。结局指标涵盖抑郁、焦虑、疲乏、压力、睡眠及生活质量等。结论:AI技术在失智症家庭照护者情绪监测和干预中应用广泛,对缓解不良情绪具有积极作用,但仍存在技术局限性与应用异质性。未来应扩大样本量、拓展人群覆盖范围,并结合实际照护情境,进一步规范AI情绪监测的应用流程与评估体系。

人工智能 情绪监测 失智症 家庭照护者 范围综述

参考文献

[1] Ni C, Song Q, Chen Q, et al. Sentiment Dynamics Among Informal Caregivers in Web-Based Alzheimer Communities: Systematic Analysis of Emotional Support and Interaction Patterns[J]. JMIR aging, 2024, 7e60050.
[2] Report Writing Group. China Alzheimer Report 2024[J]. Journal of Diagnostics Concepts & ractice, 2024, 23(03): 219-256.
[3] Manee F, Alnaser ZM, Alqattan A, et al. A Comparative Study of Burden of Care, Anxiety, and Well-Being Among Family Caregivers of Elderly with Dementia: Evidence from Kuwait[J]. Healthcare, 2025, 13(14): 1767-1767.
[4] Mohammed AA, Ali RA,Omar AH, et al. Psychometric evaluation of the depression anxiety stress scale 8-items (DASS-8)/DASS-12/DASS-21 among family caregivers of patients with dementia [J]. Frontiers in Public Health, 2022, 101012311-1012311.
[5] Beaudreau AS. The Relationship Between Objectively Measured Sleep Disturbance and Dementia Family Caregiver Distress and Burden[J]. Journal of Geriatric sychiatry and Neurology, 2008, 21(3): 159-165.
[6] Abreu W, Tolson D, Jackson AG, et al. A cross-sectional study of family caregiver burden and psychological distress linked to frailty and functional dependency of a relative with advanced dementia[J]. Dementia, 2020, 19(2): 301-318.
[7] Darien M, Jesus F, Catalina I, et al. Naturalistic Enactment to Elicit and Recognize Caregiver State Anxiety[J]. Journal of medical systems, 2016, 40(9): 192.
[8] Sunmoo Y, Peter B, Carmela A, et al. Analyzing Topics and Sentiments from Twitter to Gain Insights to Refine Interventions for Family Caregivers of Persons with Alzheimer’s Disease and Related Dementias (ADRD) During COVID-19 andemic[J]. Studies in health technology and informatics, 2022, 289: 170-173.
[9] Rochon AE, Thacker A, hillips M, et al. Developing a Dyadic Immersive Virtual Environment Technology Intervention for ersons Living With Dementia and Their Caregivers: Multiphasic User-Centered Design Study[J]. JMIR aging, 2025, 8e66212.
[10] YM AL. DETECTING STRESS INCIDENCE WITH WRISTBAND SENSOR-BASED DEVICE: A WAY TO SU ORT CAREGIVERS OF ERSONS WITH DEMENTIA[J]. Innovation in Aging, 2019, 3(Supplement1): S390-S390.
[11] Park IJ,Aqajari HAS, Rahmani MA, et al. Predicting Sleep Quality in Family Caregivers of Dementia atients From Diverse opulations Using Wearable Sensor Data[J]. Computers, informatics, nursing : CIN, 2024, DOI: 10.1097/CIN.0000000000001192.
[12] Stacy LA,Walter B, Jeffrey K. HARNESSING TECHNOLOGY TO SU ORT ERSONS WITH DEMENTIA AND THEIR CAREGIVERS[J].Innovation in Aging, 2019, 3(Supplement1): S389-S389.
[13] Hswen Y, Xiong J, Hurley M, et al. Experiences of Alzheimer’s disease and related dementia family caregivers on Reddit communities: A topic modeling and sentiment analysis[J]. Artificial intelligence in health, 2024, 1(3): 127-135.
[14] Ross J, Reilly E, Sanchez-Reilly S, Arevalo-Flechas L, Dentchev A. How real is this deal? Evaluating AI accuracy in providing support to dementia caregivers[J]. Innovation in Aging, 2023, 7(1): 1057- 1058.
[15] Espinoza F, Cook D, Da Re M, Fuentes MSC, Butler CR, Calvo RA. Designing AI- owered Chatbots for Dementia Care in eru: Stakeholder Engagement and Field Observations[J]. Interacting with Computers, 2025, iwae057.
[16] Chang Y , Dwibedi AK, Joshi S, Bhattacharjee SD. Development of an AI-powered emotionally intelligent, interactive agent prototype to support informal caregivers[J]. Innovation in Aging, 2023, 7(1): 1019.
[17] Sunmoo Y, eter B, Dante T, et al. Comparing Emotional Valence Scores of Twitter Messages from Human Coding and Machine Learning Algorithms Among Hispanic and African American Family Caregivers of ersons with Dementia[J]. Studies in health technology and informatics, 2023, 305: 440-443.
[18] Francis L, Ghafurian M. reserving the self with artificial intelligence using VIPCare-a virtual interaction program for dementia caregivers[J]. Frontiers in sociology, 2024, 9: 1331315- 1331315.
[19] Hasan UW, Zaman TK, Wang X, et al. Empowering Alzheimer’s caregivers with conversational AI: a novel approach for enhanced communication and personalized support[J]. npj Biomedical Innovations, 2024, 1(1): 3.
[20] Darien M, Jesus F, Catalina I, et al. Naturalistic Enactment to Elicit and Recognize Caregiver State Anxiety[J]. Journal of medical systems, 2016, 40(9): 192.
[21] Xinghua G, Saeid A, Jianli C, et al. Assistance from the Ambient Intelligence: Cyber–physical system applications in smart buildings for cognitively declined occupants[J]. Engineering Applications of Artificial Intelligence, 2023, 123( C): DOI:10.1016/J.ENGAPPAI.2023.106431.
[22] Jose A, Sasseville M, Gorus E, et al. Existing Digital Health Technology Index Summary Report for Older Adults Living with Neurocognitive Disorders (Mild and Major) and Their Informal Caregivers: An Environmental Scan[J]. Geriatrics (Basel, Switzerland), 2024, 9(4): 85.
[23] Megan S, et al. Identifying treatment effects of an informal caregiver education intervention to increase days in the community and decrease caregiver distress: a machine-learning secondary analysis of subgroup effects in the HI-FIVES randomized clinical trial[J]. Trials, 2020, 21(1): 189.